
Basis Technology at TAC 2012 Entity Linking

James Clarke Yuval Merhav Ghalib Suleiman
Basis Technology Corp.

One Alewife Center
Cambridge, MA 02140, USA

{jclarke|yuval|ghalib|dmurga}@basistech.com
szheng5@emory.edu

Shuai Zheng David Murgatroyd

Abstract
Basis Technology participated in the TAC
Entity-Link task of the Knowledge Base
Population track at TAC 2012. We devel-
oped a supervised learning approach which
produces a single model that is capable of
operating across all languages and entity
types. Our features are based on the out-
puts of other models, many of which are
unsupervised.

1 Introduction
Basis Technology participated in the TAC

Entity-Linking task of the Knowledge Base Pop-
ulation track at TAC 2012. The system is an
extension of our in-house cross-document coref-
erence (CDCR) system. The main attributes of
our system are:

• a single model for all languages and en-
tity types (and the NIL cluster). Adaptive
feature space for each language and entity
type.

• efficient supervised training. We frame the
problem as a structured prediction problem
thus avoiding unbalanced data issues.

• online. We do not need to receive all docu-
ments (or queries) ahead of time.

• vertical scalability. A candidate selection
phase and Apache Lucene-based implemen-
tation have enabled processing in the order
of one million documents on a single node.

Copyright 2012 Basis Technology Corp.

• unlexicalized features. Our features are
based on the output of other models, some
of which are unsupervised.

2 Cross-document Coreference
The cross-document coreference task can be

defined as: let X denote the collection of in-
document coreference chains from multiple doc-
uments. The goal is to determine whether two
chains xi, xj ∈ X refer to the same entity. The
key challenges in CDCR are ambiguity and va-
riety. Ambiguity arises because many entities
can be referred to by the same string. Variety
describes the fact that a single entity can be re-
ferred to in multiple ways.

We model CDCR as a clustering problem. We
wish to identify sets of in-document coreference
chains that refer to the same entity. The identi-
ties and number of entities is not known ahead
of time. Typically the number of chains will be
large as they are taken from a large document
collection1, thus most agglomerative clustering
algorithms are inappropriate due to vast num-
ber of chains. Performing pairwise comparisons
would require quadratic time and space.

Another consideration is that for CDCR to be
practical it must support receiving documents in
an online (or streaming) manner. It is unreal-
istic to expect all documents to be received in
a single batch. In order scale and support the
streaming scenario we use an incremental clus-
tering algorithm in which decisions are made

1We observe approximately 30 in-document chains per
document in Gigaword



as soon as a document arrives for processing.
More formally: given an in-document corefer-
ence chain x and a set of clusters Y , the goal
is to determine which cluster y ∈ Y to place x
or to create a new cluster y′ with the singleton
x. Initially Y is empty, but grows as the system
processes new documents.

Note that we do not currently perform reclus-
tering as upstream applications may not be able
to handle chains moving between clusters.

Entity Linking For the entity-linking task we
pre-seed the initial set of clusters. One clus-
ter is created per knowledge base entry. Each
pre-seeded cluster contains a single in-document
chain automatically extracted from the knowl-
edge base (see Section 4 for more details).

2.1 Learning and Inference
We cast the incremental clustering problem as

a structured prediction problem, where the goal
is to assign the correct cluster (or new cluster) to
the in-document coreference chain. The struc-
tured prediction approach has several advan-
tages over viewing the problem as binary classi-
fication in which the goal is to predict merge or
not merge for each chain-cluster pair. The struc-
tured prediction framing does not suffer from
unbalanced data as all negative examples are im-
plicitly encoded. We also explicitly consider the
new cluster decision which removes the need to
tune threshold for new cluster generation.

We formulate the inference problem as:

ŷ = Fw(x, Y ) = arg max
y∈Y

wTΦ(x, y) (1)

Where Y is the set of existing clusters (we also
include a dummy new cluster symbol). Φ is a
feature function which describes the relationship
between the coreference chain x and the candi-
date cluster y. w is a weight vector containing
the parameters of the model.

The weight vector is learned using a struc-
tural support vector machine (we use the JLIS
library (Chang et al., 2010)). The correct clus-
ter, y∗, should score higher than all other possi-
ble clusters plus the loss of scoring the incorrect

cluster higher than y∗. We define our loss func-
tion as:

l(y, y∗) =
{
1, y ̸= y∗

0, y = y∗
(2)

Note that this can be viewed as solving a rank-
ing problem with a slightly different loss func-
tion (similar to Dredze et al. (2010)).

3 Model
We proceed in three stages. First we build

a representation of the in-document coreference
chain, then we generate a set of candidate clus-
ters and finally generate features for the chain
and candidate clusters and perform inference.

3.1 Representations
We first describe the representation of an in-

document coreference chain and cluster. Recall
that we calculate the feature vector between a
chain and an existing cluster, Φ(x, y).

We associate the following attributes with an
in-document coreference chain, x:

• entity type (we only process person, orga-
nization and location entity types).

• longest mention (head mention) of x.

• adjacent entity context. The named en-
tity immediately to the left and right of the
longest mention.

• term context. The ten terms to the left and
ten terms to the right of the longest men-
tion. Not crossing sentence boundaries.

• entity context. The five entities to the left
and five entities to the right of the longest
mention (not including mentions from the
same coreference chain).

• document term context. The terms in the
document.

• document entity context. The entities in
the document.

A cluster, y, is represented by the set of coref-
erence chains it contains. We also associate the
following information with a cluster:



• cluster entity type. The entity type of the
coreference chain that formed the cluster.

• a cluster label. The most frequent longest
mention in the cluster (ties are broken by
mention length)

When a cluster is pre-seeded using the knowl-
edge base, the following information is also
captured from the structured information (Fig-
ure 1):

• The terms from a pre-defined set of facts.
Example facts include: founder and head-
quarters for organizations; state and district
for locations; and occupation and title for
person entities.

• Disambiguation context. KB entries con-
tain disambiguation context to distinguish
them from other entities with the same
name (e.g., Mike Quigley (footballer)). We
apply a few simple heuristics to extract this
context from the KB names.

• Anchor information from Google Crosswiki
data (see Section 3.2.3).

3.2 Candidate Selection
In theory, every coreference chain that enters

the system could be clustered with any of the
existing clusters (or form a new cluster). How-
ever, for large data sets considering every cluster
is prohibitively expensive. Rather than perform
inference over the entire set of clusters we first
generate a set of candidate clusters. Candidate
selection has been a popular method in previ-
ous TAC systems (McNamee et al., 2011; Dredze
et al., 2010). We perform candidate selection
using a variety of filtering techniques that are
tuned for high recall while still dramatically re-
ducing the set of clusters to consider.

3.2.1 New Cluster Filter
The New Cluster Filter adds the dummy new

cluster symbol to the candidate clusters. If
this filter is not included then every coreference
chain must be merged with an existing clus-
ter. Conversely, including this as the only fil-
ter forces every coreference chain to form a new
cluster.

Name 1 Name 2 Score
George Bush George Bush 1.00
george bush George Bush 0.99
Gorge Bush George Bush 0.96
George W. Bush George Bush 0.94
Bush George Bush 0.84
George George Bush 0.73
Jeb Bush George Bush 0.56
Bill Clinton George Bush 0.41
Laura Bush George Bush 0.22
U.S. United States 0.74
希蒙 ·佩雷斯 Shimon Peres 0.77

Table 1: Rosette Name Indexer similarity
scores.

3.2.2 Name Similarity Cluster Filter
The Name Similarity Cluster Filter produces

candidate clusters containing similar mentions
to the current longest mention. We use Ba-
sis Technology’s Rosette Name Indexer (RNI)
which provides a similarity score between two
name strings. RNI has multilingual function-
ality which is capable of comparing names from
different languages and scripts. Similarity scores
range between 0.0 and 1.0, where 1.0 indicates
an exact match (see Table 1 for examples).

3.2.3 Anchor Text Cluster Filter
The Anchor Text Cluster Filter produces can-

didate clusters containing mentions that were
seen in Wikipedia or the Web as anchor text
pointing to a KB entity. This data was obtained
from the Google Cross-wiki dataset (Spitkovsky
and Chang, 2012).

For example, Newcastle United F.C.2 is the
largest cluster from the 2012 English-English
evaluation dataset. Figure 2 shows the mentions
from the cluster.

This cluster contains a lot of variation and
background knowledge about the soccer team.
Methods that are designed for general purpose
name variation typically do not encode such
entity-specific knowledge. For example, RNI
does not contain the knowledge that Toon, Mag-
pies or Barcodes are nicknames for the team.

2⟨id :E0669691, wiki_title :Newcastle_United_F.C.⟩



wiki_title CERN
type ORG
id E0533611
name CERN
facts class Infobox Organization
fact name {name, European Organization for Nuclear Research Organisation Européenne pour

la Recherche Nucléaire}
fact name {type, Particle physics laboratory}
fact name {headquarters, Geneva}
fact name {leader_name, Robert Aymar}
wiki_text The European Organization for Nuclear Research (French: Organisation Européenne

pour la Recherche Nucléaire), known as CERN (see Naming), is the world’s largest
particle physics laboratory, situated in the northwest suburbs of Geneva...

Figure 1: TAC Knowledge Base entry snippet for CERN.

Newcastle Utd
Toon
Magpies
mags
Newcastle
Barcodes

Figure 2: Mentions for Newcastle United F.C.
cluster in TAC 2012 English-English evaluation
data.

However, by leveraging the Cross-wiki data we
are able to capture most of this knowledge. Fig-
ure 3 shows some of the raw information associ-
ated with Newcastle United F.C. in Cross-wiki
data.

We filter the contents of the Cross-wiki data
based on frequency and heuristics to remove
common noise patterns. In addition to nick-
names and alternative spellings, the anchor text
also contain some cross-lingual terms.

The anchor text filter adds clusters to the can-
didate list if the current mention matches an an-
chor string.

3.2.4 Required Context Cluster Filter
The Required Context Cluster Filter removes

certain candidates that passed through the other
cluster filters. The idea is that some clusters are
almost always accompanied by certain context,

Newcastle United
Newcastle
Newcastle United F.C.

!"#$%&' (#!%()*
��� �����
Magpies

דטיינוי לסאקוינ
紐卡素
Toon Army
The Toon
http://en.wikipedia.org/wiki/
Barcode

Figure 3: Sample Google Cross-wiki data for
Newcastle United F.C.

and if that context is missing, the query is too
ambiguous to link to that cluster. For exam-
ple, a document mentioning a city will nearly
always mention the state as well. In order for
a query on Amherst to link to the KB entry for
Amherst, New Hampshire, we require the query
context to contain the words New Hampshire3.
However, there are cases where well-known cities
are not always mentioned with their state, e.g.
Los Angeles, and we make exceptions for those
using probabilities from Cross-wiki data.

3State abbreviations are expanded to their full form
during pre-processing.



3.3 Features
Our model mainly exploits unlexicalized fea-

tures based on the output of other models some
of which are unsupervised.

The first set of features are based on the
longest mention of input coreference chain.

RNI score Two features focusing on the va-
riety problem are derived from the RNI score.
One feature captures the max (single-link) score
between the input’s longest mention and the
cluster’s longest mentions. A second feature
uses the RNI score and the length of the men-
tions being compared. For example, when com-
paring George with George Bush we create a fea-
ture that indicates the comparison was between
a one token name and two token name. The
value of the feature is the RNI score. We bin
name length into the following ranges: 1, 2, 3,
4+. This allows the learner to learn different
weights for name similarity based on the length.

Google Cross-wiki Google Cross-wiki data
is used for two features: (1) probability of
longest mention given entity (variety), (2) prob-
ability of entity given longest mention (ambigu-
ity).

Unsupervised ambiguity The Google
Cross-wiki data is a great resource when linking
to a knowledge base drawn from Wikipedia.
However, in other applications it is harder to
leverage. We create an unsupervised model that
focuses on ambiguity. We perform in-document
coreference resolution on a large corpus. From
the in-document coreference chains we calculate
the probability of the head mention given a
mention (Equation (3)).

P (head|mention) = #(head,mention)
#(mention) (3)

The feature uses the cluster label as the head
mention and the longest mention of the input to
be clustered as the mention.

Context features The remainder of our fea-
ture space uses an average-link normalized
TF-IDF similarity comparison of the context

fields associated with an in-document corefer-
ence chain and cluster. For an input x with con-
text field q and candidate cluster y with context
field r, the similarity is calculated as follows:

min
(
1.0,

∑
d∈y
∑

t∈xq
tf(t, dr)idf(t)

|y|
∑

t∈xq
tf(t, xq)idf(t)

)

TF-IDF similarity between the following con-
text fields (see Section 3.1) are used as features:

• in-document chain entity context with clus-
ter entity context, KB context (a combina-
tion of KB facts and disambiguation con-
text), and cluster document term context.

• in-document chain term context with clus-
ter term context, KB context, and cluster
document entity context.

• in-document chain adjacent entity context
with cluster adjacent entity context, and
KB context

• in-document chain document term context
with cluster document term context

• in-document chain document entity context
with cluster document entity context.

3.4 Feature Binning
Previous work shows that the performance of

many models can be improved using feature bin-
ning (Dougherty et al., 1995). However, deter-
mining the range of each feature bin can be dif-
ficult. We use k-means clustering to cluster all
observed values for a feature using k to spec-
ify the desired number of bins. As the fea-
ture values are one dimensional we use an op-
timal dynamic programming implementation of
k-means (Wang and Song, 2011). Features are
re-normalized by the bin’s upper-bound to allow
the learner to discriminate between instances
that fall within the same bin.

3.5 Adaptive features for all languages
and entity types

Due to the different characteristics of differ-
ent entity types (e.g., different number of unique



names), many of last year’s systems classified
the queries into three entity types first and
then trained models separately for each entity
type (Ji et al., 2011).

We take a different approach. Rather than
applying different models to different types and
languages, we duplicate our feature space based
on the source document’s language and the en-
tity type agreement of the mention and clus-
ter. This is a technique used in domain adap-
tation (Daumé III, 2007). For every feature we
make the following versions: a general version,
a version prefixed with the in-document chain’s
source document language, a version prefixed
with the chain’s type and candidate cluster type,
and a version with both the language and type
prefix. This allows us to learn one model that is
capable of handling all languages and types.

4 Implementation Details
In this section we describe a number of im-

plementation details relating to our pipeline and
how we process the TAC data.

Documents are pre-processed using Ba-
sis Technology’s Rosette Linguistic Platform
(RLP). In particular Rosette Base Linguistics
(RBL) is used for sentence boundary detection,
tokenization and lemmatization; and Rosette
Entity Extractor (REX) for detecting mentions
of entities and performing in-document corefer-
ence resolution.

As previously mentioned, Rosette Name In-
dexer (RNI) provides name similarity scores.
RNI integrates directly into Apache Lucene
to provide efficient name similarity over large
knowledge bases. Our cross-document corefer-
ence system also leverages Lucene in order to
store state and efficiently generate candidate
clusters and features.

4.1 Query Extension
TAC specifies queries as sub-strings within a

document. We use a number of techniques to
extract the in-document chain used for linking
given only the query and document. If the query
exactly matches a named entity identified by
REX then we use the in-document chain and
type from REX (unless the type is not person,

Entity Type Frequency
Person 114,523
Location 116,498
Organization 55,813
Unknown 531,907

Table 2: Distribution of entity types in the TAC
KB.

organization or location). When an exact match
cannot be found we override REX forcing the
query to be annotated as a named entity. The
entity type is determined using a large corpus
automatically annotated by REX.

4.2 Knowledge Base Mention
Identification

In order to use our cross-document corefer-
ence system for entity linking we pre-seed the
system with clusters generated from the KB. A
pre-seeded cluster contains a single in-document
coreference chain which represents the entity.
Finding a good chain to represent the entity
is important as the majority of information for
linking is present in the chain. A KB entry is a
set of structured and unstructured information
(Figure 1). We use the unstructured text snip-
pet to find a representative in-document chain.
The in-document chain to represent the cluster
is selected from the unstructured text snippet.
Selection is based on matching against the KB’s
name, falling back to fullname and other fields
when matches cannot be found.

4.3 Knowledge Base Type Identification
The TAC knowledge base contains 818,741 en-

tities. While some of these entities have been an-
notated with type information, many have not
(see Table 2). Our feature space contains type
agreement information between knowledge base
and query, thus it is advantageous to have types
assigned to the KB entities.

We trained a Naive Bayes (NB) classifier to
predict person, location, organization, or mis-
cellaneous types for KB entities. The classi-
fier’s features are derived entirely from the TAC
KB. The classifier is only used when the entity’s



Fact Class Frequency
infobox settlement 95,142
infobox album 72,987
infobox musical artist 32,442
infobox film 27,914
infobox actor 23,077
infobox single 21,193
infobox book 15,498
infobox football biography 14,567
infobox person 12,849
infobox radio station 12,642

Table 3: Most frequent fact classes in the TAC
KB.

type is not annotated in the TAC KB or in the
training used by the classifier. All entities de-
termined to be miscellaneous are removed from
the KB, reducing the KB’s size from 818,741 to
approximately 550,00 entities.

Approach Every entry in the KB contains a
class (e.g., album); Table 3 lists the ten most
frequent4. We exploit the fact that the majority
of classes are unambiguous (i.e., all entries be-
longing to a certain class are of the same entity
type) and design the classifier to predict types
for classes rather than entries.

We manually annotated 300 classes with one
of the four entity types and automatically ex-
tracted the following features:

• Most frequent fact fields: Classes of
the same type share many fact fields (e.g.,
many person classes contain a birthdate
fact). Since facts can be noisy, we only use
the most frequent ones per class; we found
empirically that taking the top sixty per-
forms well.

• Fact class tokens: Many classes of the
same type share tokens (e.g., Infobox chess
player and Infobox poker player). We in-
clude the individual tokens besides Infobox
as features.

• Fact class suffix: Classes of the same type
that do not share any class tokens may still

4Frequency depends on the normalization method.

have a useful suffix in common (e.g., boxer
and player). We include the last two letters
of each fact class as a suffix feature.

All features are binary and without smooth-
ing. Class tokens and suffix features are prefixed
using unique tokens to distinguish them from
other features. Table 4 shows a few examples
of features extracted for different classes – we
can see that person classes share many features.
The classifier achieved 95% accuracy using 10-
fold cross validation on the training data. The
majority of errors are miscellaneous entities be-
ing classified as person, and organization as loca-
tion. We also manually fixed a few errors found
in the KB, such as a few U.S. states entries as-
sociated with U.S. state symbols instead of U.S.
state.

4.4 Multilingual Adjustments
Our feature space is designed to handle multi-

ple languages, however the models that support
our features can benefit from additional knowl-
edge about the target languages. This year we
focused on Chinese using an English only knowl-
edge base.

4.4.1 Candidate Selection
RNI has built in support for name sim-

ilarity between English and Chinese names.
It is flexible and can be augmented with
a dictionary of overrides for English-Chinese
name pairs. We built a dictionary using the
LDC’s Chinese-English Name Entity Lists v1.05

which contains over 500,000 name pairs (e.g.,
⟨加拿大, Canada⟩). Approximately 65% of the
Chinese queries in TAC 2011 Chinese-English
training and evaluation sets are covered by the
corpus. Also, recall the anchor text filter (Sec-
tion 3.2.3) covers entries in multiple languages.

4.4.2 Context Comparison
Our context comparison uses a vector space

model (see Section 3.3). To compare con-
text across languages, specifically across Chinese
and English, we used Rosette Name Translator
(RNT) to translate entity contexts from English

5LDC2005T34 (Linguistic Data Consortium, 2005)



Fact Class Features
Infobox district cambodia SUFFIXia, INFOBOXdistrict, INFOBOXcambodia, province,

name, geocode, populationasof, communes, villages, khmer
Infobox actress SUFFIXss, INFOBOXactress, occupation, birthdate, birth-

place, name, spouse, birthname, location, deathdate, death-
place

Infobox artist SUFFIXst, INFOBOXartist, name, birthdate, field, national-
ity, location, deathdate, deathplace, training, movement, birth-
name, works

Infobox engineer SUFFIXer, INFOBOXengineer, name, birthdate, deathdate,
nationality, birthplace, significantprojects, discipline, institu-
tions

Infobox dotcom company SUFFIXny, INFOBOXdotcom, INFOBOXcompany, company-
name, foundation, url, companytype, websitetype, currentsta-
tus, language

Table 4: Example features used for KB type identification.

Dataset PER ORG LOC ALL
English-English 0.784 0.387 0.440 0.566
English-Chinese 0.561 0.495 0.634 0.565
English-Spanish 0.826 0.521 0.454 0.595

Table 5: TAC F1 measurements for basistech1
2012 evaluation data (broken down by query
type).

to Chinese. We combined RNT with user spec-
ified dictionaries generated automatically from
the LDC’s Chinese-English Name Entity Lists.

5 Training and Evaluation

We learn the weight vector for the model us-
ing a structural support vector machine. This
is a supervised learning setting which requires
training examples. Our training examples con-
sist of the filtered set of candidate clusters (the
truth cluster is also added if it wasn’t included
in the filters). Recall that the feature vector
is generated between the current in-document
chain and candidate cluster. Training examples
are generated under the assumption that all pre-
vious decisions were correct.

5.1 Experimental Results
For our submission we trained on the TAC

2009, 2010, 2011 training and evaluation data,
and 2012 training data. Table 5 shows a sum-
mary of our results. The measurements against
the 2012 evaluation data are general in the mid-
to-high 50s of F1. This is a surprising result as
our development scores were much higher. For
development purposes we trained on all of TAC
2010 and 2011 training data and tested on 2011
evaluation data. Our results before submission
were 0.83 F1 and 0.74 F1 for English-English
and English-Chinese, respectively.

We also submitted systems that trained on
less data (starting with the latest data) with
the intuition that earlier TAC data may contain
more annotation errors but omit the results from
this paper.

5.2 Discussion
Our measurements on the 2012 evaluation

datasets were significantly lower than we ex-
pected. In order to the determine the cause
we conducted a post-mortem. The conclusion is
that the 2012 evaluation datasets reflect greater
ambiguity and variety than the previous TAC
evaluation datasets. The model’s feature space
is not expressive enough to discriminate between
candidate clusters in the 2012 evaluation data.
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Figure 4: A comparison of ambiguity and variety across the TAC datasets.

To uncover some differences between the 2012
evaluation datasets and previous datasets, we
measure ambiguity and variety of each dataset.
Our definitions of ambiguity and variety differ
from Ji et al. (2011). We define the ambiguity
of a dataset as the average number of unique
mentions per entity; and variety as the average
number of entities per mention.

Figure 4 illustrates the fact that the 2012 data
is both more ambiguous and more varied than
previous years.

In order to better understand our model we
ran an experiment with the evaluation data from
each year. We measured model accuracy using
5-fold cross-validation when training on the eval-

Year Dataset Model Accuracy
2009 English-English 86.9%
2010 English-English 85.7%
2011 English-English 86.9%
2012 English-English 69.5%

Table 6: 5-fold cross-validation model accuracy
on TAC evaluation data.

uation data. Table 6 shows the results. It is
clear that the 2012 data is much more difficult
and our model is unable to attain the accuracy
seen in previous years.



6 Conclusions

Our approach to entity linking for TAC 2012
is a modification of our cross-document corefer-
ence resolution system. The system uses a ma-
chine learning approach with an adaptive fea-
ture space which allows us to learn a single
model for all languages and entity types. While
our system performed well on historical TAC
data, it performed poorly on the TAC 2012 data.
A post-mortem of the results suggests that the
TAC 2012 dataset is significantly different than
the data used for training. Also our feature
space is not rich enough to capture the ambi-
guity and variety encountered in the TAC 2012
data.
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